Partial Scene Reconstruction for Close Range Photogrammetry Using Deep Learning Pipeline for Region Masking

Author:

Eldefrawy MahmoudORCID,King Scott A.ORCID,Starek MichaelORCID

Abstract

3D reconstruction is a beneficial technique to generate 3D geometry of scenes or objects for various applications such as computer graphics, industrial construction, and civil engineering. There are several techniques to obtain the 3D geometry of an object. Close-range photogrammetry is an inexpensive, accessible approach to obtaining high-quality object reconstruction. However, state-of-the-art software systems need a stationary scene or a controlled environment (often a turntable setup with a black background), which can be a limiting factor for object scanning. This work presents a method that reduces the need for a controlled environment and allows the capture of multiple objects with independent motion. We achieve this by creating a preprocessing pipeline that uses deep learning to transform a complex scene from an uncontrolled environment into multiple stationary scenes with a black background that is then fed into existing software systems for reconstruction. Our pipeline achieves this by using deep learning models to detect and track objects through the scene. The detection and tracking pipeline uses semantic-based detection and tracking and supports using available pretrained or custom networks. We develop a correction mechanism to overcome some detection and tracking shortcomings, namely, object-reidentification and multiple detections of the same object. We show detection and tracking are effective techniques to address scenes with multiple motion systems and that objects can be reconstructed with limited or no knowledge of the camera or the environment.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Registration of Point Clouds in 3D Space Using Soft Alignment;Journal of Communications Technology and Electronics;2024-09-11

2. Sparse-to-Dense Point Cloud Registration Based on Rotation-Invariant Features;Remote Sensing;2024-07-06

3. Key-Point-Descriptor-Based Image Quality Evaluation in Photogrammetry Workflows;Electronics;2024-05-29

4. Neural Network for Point Clouds Registration Based on Soft Matching;2024 X International Conference on Information Technology and Nanotechnology (ITNT);2024-05-20

5. A low-cost close-range photogrammetric surface scanner;Frontiers in Imaging;2024-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3