Key-Point-Descriptor-Based Image Quality Evaluation in Photogrammetry Workflows

Author:

Matuzevičius Dalius1ORCID,Urbanavičius Vytautas1ORCID,Miniotas Darius1ORCID,Mikučionis Šarūnas1ORCID,Laptik Raimond1ORCID,Ušinskas Andrius1ORCID

Affiliation:

1. Department of Electronic Systems, Vilnius Gediminas Technical University (VILNIUS TECH), 10105 Vilnius, Lithuania

Abstract

Photogrammetry depends critically on the quality of the images used to reconstruct accurate and detailed 3D models. Selection of high-quality images not only improves the accuracy and resolution of the resulting 3D models, but also contributes to the efficiency of the photogrammetric process by reducing data redundancy and computational demands. This study presents a novel approach to image quality evaluation tailored for photogrammetric applications that uses the key point descriptors typically encountered in image matching. Using a LightGBM ranker model, this research evaluates the effectiveness of key point descriptors such as SIFT, SURF, BRISK, ORB, KAZE, FREAK, and SuperPoint in predicting image quality. These descriptors are evaluated for their ability to indicate image quality based on the image patterns they capture. Experiments conducted on various publicly available image datasets show that descriptor-based methods outperform traditional no-reference image quality metrics such as BRISQUE, NIQE, PIQE, and BIQAA and a simple sharpness-based image quality evaluation method. The experimental results highlight the potential of using key-point-descriptor-based image quality evaluation methods to improve the photogrammetric workflow by selecting high-quality images for 3D modeling.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3