Infrasound Source Localization of Distributed Stations Using Sparse Bayesian Learning and Bayesian Information Fusion

Author:

Wang RanORCID,Yi XiaoquanORCID,Yu Liang,Zhang ChenyuORCID,Wang Tongdong,Zhang Xiaopeng

Abstract

The precise localization of the infrasound source is important for infrasound event monitoring. The localization of infrasound sources is influenced by the atmospheric propagation environment and infrasound measurement equipment in the large-scale global distribution of infrasound arrays. A distributed infrasound source localization method based on sparse Bayesian learning (SBL) and Bayesian information fusion is proposed to reduce the localization error. First, the arrival azimuth of the infrasound source is obtained based on the SBL algorithm. Then, the infrasound source localization result is obtained by the Bayesian information fusion algorithm. The localization error of the infrasound source can be reduced by this infrasound source method, which incorporates the uncertainty of the infrasound propagation environment and infrasound measurement equipment into the infrasound source localization results. The effectiveness of the proposed algorithm was validated using rocket motor explosion data from the Utah Test and Training Range (UTTR). The experimental results show that the arrival azimuth estimation error can be within 2° and the localization distance error is 3.5 km.

Funder

Natural Science Foundation of Shanghai

National Natural Science Foundation of China

Marine Interdisciplinary Program of Shanghai Jiao Tong University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3