Infrasound Observations of Atmospheric Disturbances Due to a Sequence of Explosive Eruptions at Mt. Shinmoedake in Japan on March 2018

Author:

Batubara MarioORCID,Yamamoto Masa-yuki

Abstract

Thirty infrasound sensors have been operated over Japan since 2015. We developed the irregular array data processing in order to detect and estimate the parameters of the arrival source waves by using infrasound data related to the sequence of the volcanic eruption at Mt. Shinmoedake in March 2018. We found that the apparent velocity at the ground was equal to the acoustic velocity at particular reflection levels. The results were confirmed through a comparison of the findings of the apparent velocity with a wave propagation simulation on the basis of the azimuth, infrasound time arrivals, and the state of the atmospheric background using global atmospheric models. In addition, simple ideas for estimating horizontal wind speeds at certain atmospheric altitudes based on infrasound observation data and their validation and comparison were presented. The calculated upper wind speed and wind observed by radiosonde measurements were found to have a qualitative agreement. Propagation modeling for these events estimated celerities in the propagation direction to the sensors that were consistent with the tropospheric and stratospheric ducting. This study could inspire writers, in particular, and readers, in general, to take advantage of the benefits of infrasound wave remote-sensing for the study of the Earth’s atmospheric dynamics.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3