An Improved Submerged Mangrove Recognition Index-Based Method for Mapping Mangrove Forests by Removing the Disturbance of Tidal Dynamics and S. alterniflora

Author:

Xia Qing,He Ting-TingORCID,Qin Cheng-ZhiORCID,Xing Xue-MinORCID,Xiao Wu

Abstract

Currently, it is a great challenge for remote sensing technology to accurately map mangrove forests owing to periodic inundation. A submerged mangrove recognition index (SMRI) using two high- and low-tide images was recently proposed to remove the influence of tides and identify mangrove forests. However, when the tidal height of the selected low-tide image is not at the lowest tidal level, the corresponding SMRI does not function well, which results in mangrove forests below the low tidal height being undetected. Furthermore, Spartina alterniflora Loisel (S. alterniflora) was introduced to China in 1979 and rapidly spread to become the most serious invasive plant along the Chinese coastline. The current SMRI has failed to distinguish S. alterniflora from submerged mangrove forests because of their similar spectral signatures. In this study, an SMRI-based mangrove forest mapping method was developed using the time series of Sentinel-2 images to mitigate the two aforementioned issues. In the proposed method, quantile synthesis was applied to the time series of Sentinel-2 images to generate a lowest-tide synthetic image for creating SMRI to identify submerged mangrove forests. Unsubmerged mangrove forests were classified using a support vector machine, and a preliminary mangrove forest map was created by merging them. In addition, S. alterniflora was distinguished from the mangrove forests by analyzing their phenological differences. Finally, mangrove forest mapping was performed by masking S. alterniflora. The proposed method was applied to the entire coastline of the Guangxi Province, China. The results showed that it can reliably and accurately identify submerged mangrove forests derived from SMRI by synthesizing low- and high-tide images using quantile synthesis, and the differentiation of S. alterniflora using phenological differences results in more accurate mangrove mapping. This work helps to improve the accuracy of mangrove forest mapping using SMRI and its feasibility for coastal wetland monitoring. It also provides data for sustainable management, ecological protection, and restoration of vegetation in coastal zones.

Funder

National Natural Science Foundation of China

Research Foundation of Education Bureau of Hunan Province, China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3