Mangrove forest mapping from object-oriented multi-feature ensemble classification using Sentinel-2 images

Author:

Zhang Han,Xia Qing,Dai Shuo,Zheng Qiong,Zhang Yunfei,Deng Xingsheng

Abstract

Accurate mapping of mangrove forests is crucial for understanding their ecosystem function and developing effective management policies. However, the absence of an operational multi-feature fusion approach and an ensemble classification system restricts the achievement of this goal. This study aims to develop an object-oriented multi-feature ensemble classification scheme (OMEC). First, an enhanced mangrove spectral index (EMSI) is established by analyzing the spectral reflectance differences between mangrove forests and other land cover types. Sentinel-2 images are segmented into objects using the multi-resolution segmentation method. Then, spectral, textural, and geometric features are extracted, and these features (including EMSI) are inputted into the nearest neighbor classifier to implement mangrove classification. The experiment was conducted in three typical mangrove areas in China using Sentinle-2 images. The results demonstrate that EMSI exhibits good spectral separability for mangroves and performs well in the ensemble classification scheme. The overall accuracy of mangrove classification exceeds 90%, with a Kappa coefficient greater than 0.88. The object-oriented multi-feature ensemble classification scheme significantly improves accuracy and exhibits excellent performance. The method enhances the accuracy of mangrove classification, enriches the approach to mangrove remote sensing interpretation, and offers data support and scientific references for the restoration, management, and protection of coastal wetlands.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3