2D&3DHNet for 3D Object Classification in LiDAR Point Cloud

Author:

Song WeiORCID,Li DechaoORCID,Sun SuORCID,Zhang LingfengORCID,Xin YuORCID,Sung YunsickORCID,Choi Ryong

Abstract

Accurate semantic analysis of LiDAR point clouds enables the interaction between intelligent vehicles and the real environment. This paper proposes a hybrid 2D and 3D Hough Net by combining 3D global Hough features and 2D local Hough features with a classification deep learning network. Firstly, the 3D object point clouds are mapped into the 3D Hough space to extract the global Hough features. The generated global Hough features are input into the 3D convolutional neural network for training global features. Furthermore, a multi-scale critical point sampling method is designed to extract critical points in the 2D views projected from the point clouds to reduce the computation of redundant points. To extract local features, a grid-based dynamic nearest neighbors algorithm is designed by searching the neighbors of the critical points. Finally, the two networks are connected to the full connection layer, which is input into fully connected layers for object classification.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3