Pedestrian Detection with LiDAR Technology in Smart-City Deployments–Challenges and Recommendations

Author:

Torres Pedro12ORCID,Marques Hugo1ORCID,Marques Paulo13

Affiliation:

1. Instituto Politécnico de Castelo Branco, Av. Pedro Álvares Cabral, n°12, 6000-084 Castelo Branco, Portugal

2. Research Center for Systems and Technologies (SYSTEC)—Advanced Production and Intelligent Systems Associated Laboratory (ARISE), FEUP, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

3. Allbesmart LDA, Avenida do Empresário, Centro de Empresas Inovadoras 1, 6000-767 Castelo Branco, Portugal

Abstract

This paper describes a real case implementation of an automatic pedestrian-detection solution, implemented in the city of Aveiro, Portugal, using affordable LiDAR technology and open, publicly available, pedestrian-detection frameworks based on machine-learning algorithms. The presented solution makes it possible to anonymously identify pedestrians, and extract associated information such as position, walking velocity and direction in certain areas of interest such as pedestrian crossings or other points of interest in a smart-city context. All data computation (3D point-cloud processing) is performed at edge nodes, consisting of NVIDIA Jetson Nano and Xavier platforms, which ingest 3D point clouds from Velodyne VLP-16 LiDARs. High-performance real-time computation is possible at these edge nodes through CUDA-enabled GPU-accelerated computations. The MQTT protocol is used to interconnect publishers (edge nodes) with consumers (the smart-city platform). The results show that using currently affordable LiDAR sensors in a smart-city context, despite the advertising characteristics referring to having a range of up to 100 m, presents great challenges for the automatic detection of objects at these distances. The authors were able to efficiently detect pedestrians up to 15 m away, depending on the sensor height and tilt. Based on the implementation challenges, the authors present usage recommendations to get the most out of the used technologies.

Funder

Fundo Europeu de Desenvolvimento Regional

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3