Mapping the Recent Vertical Crustal Deformation of the Weihe Basin (China) Using Sentinel-1 and ALOS-2 ScanSAR Imagery

Author:

Qu FeifeiORCID,Zhang Qin,Niu YufenORCID,Lu ZhongORCID,Wang Shuai,Zhao ChaoyingORCID,Zhu WuORCID,Qu WeiORCID,Yang Chengsheng

Abstract

The Weihe Basin, located in central China, is a Cenozoic rift basin that is characterized by a complicated geological background, with intense tectonic movement and relatively significant seismic activity. The faulting behaviors, slip rates, geometrical structures, and possible surface traces of the active faults in the Weihe Basin are still not well known. The goal of this work is to provide a more complete picture of recent vertical ground deformation of the basin and to identify active faults. We derived two basin-wide average InSAR deformation maps during 2015–2019 using C-band Sentinel-1A/B and L-band ALOS PALSAR2 ScanSAR imagery. The basin-wide vertical and east–west deformation components decomposed from ascending and descending InSAR measurements show that vertical movement dominates the deformation of the Weihe Basin. Subsidence and uplift maxima both occurred over the Xi’an region at rates of about −146 and 20 mm/y, respectively. A subsidence of ~38 mm/y was found at Sanyuan, Fuping, Weinan, Lantian, Qianxian, and Xingping while an uplift of ~11 mm/y was found at Fufeng, Huxian, Jingyang, Fuping, Pucheng, and Huaxian. The significant vertical deformation in these regions is spatially linked to previously identified or unmapped faults. A slip rate of ~13.7 mm/y on faults F20, F6, F10, and F7 explained the observed uplift of up to 5 mm/y in the Fufeng and Wugong areas. Furthermore, surface fault traces were clearly identified for faults F7-1, F8-1, F20, F25, and F26 based on discontinuities in the InSAR-derived vertical deformation measurements. Our results provide an accurate and economical way to delineate the surface deformation and fault movement and the associated geohazards over the Weihe Basin, and offer independent unprecedented data for further geological and geophysical interpretation.

Funder

China Postdoctoral Science Foundation

Shaanxi Province Postdoctoral Science Foundation

Technologies R&D Program from the Bureau of Science and Technology of Handan

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference54 articles.

1. Extension in the graben systems around the Ordos (China), and its contribution to the extrusion tectonics of south China with respect to Gobi-Mongolia

2. Segmentary characteristics of the geometrical structure of the longxian-qishan-mazhao active fault;Chen;Earthquake,2019

3. Tectonic evolution and seismicity of weihe fault zone;Peng;Seismol. Egology,1992

4. The Active Faults and Geohazards in Weihe Basin;Peng,1992

5. Crustal deformation and strain fields of the Weihe Basin and surrounding area of central China based on GPS observations and kinematic models

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3