Dynamic Monitoring and Analysis of Mining Land Subsidence in Multiple Coal Seams in the Ehuobulake Coal Mine Based on FLAC3D and SBAS-InSAR Technology

Author:

Zhou Shihang1,Wang Hongzhi12,Shan Chengfang3,Liu Honglin12ORCID,Li Yafeng3,Li Guodong1,Yang Fajun3,Kang Haitong3,Xie Guoliang3

Affiliation:

1. College of Geology and Mines Engineering, Xinjiang University, Urumqi 830046, China

2. Key Laboratory of Environmental Protection Mining for Minerals Resources at Universities of Education, Department of Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830047, China

3. Kuqa Yushuling Coal Mine Co., Ltd., Kuqa 652902, China

Abstract

Aiming at the land subsidence problem caused by multiple coal seam mining in the Ehuobulake Coal Mine, this paper, considering the geological conditions of the first and fifth layers of coal, adopts the method of combining FLAC3D numerical simulation and SBAS-InSAR technology to analyze the dynamic evolution law of land subsidence amount and range under multiple coal seam repeated mining conditions. The reliability of the technology is verified by the field GPS monitoring data. The results show that, under the mining condition of multiple coal seams in the Ehuobulake Coal Mine, the land subsidence presents obvious asymmetry, and the size and range of the land subsidence in the mining area further increase due to the mining of lower layer coal. FLAC3D simulation results show that the maximum land subsidence is −211.8 mm. The results of SBAS-InSAR monitoring show that the maximum land subsidence is −225 mm, and the land subsidence obtained by the two methods has a high degree of fitting. The method of combining FLAC3D and InSAR technology can accurately and reliably monitor and analyze the land subsidence under the repeated mining of multiple coal seams in the mining area. It can provide effective guidance for the stability analysis of mined-out areas and the prediction of the influence of repeated mining on ground deformation.

Funder

the National Natural Science Foundation of China

Natural Science Foundation of Xinjiang Uyghur Autonomous Region

Xinjiang Uygur Autonomous Region “Tianshan Talent Training” Program

Xinjiang Uygur Autonomous Region Special Program for Key R&D Tasks

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3