Abstract
The serious pollution of PM2.5 caused by rapid urbanization in recent years has become an urgent problem to be solved in China. Annual and daily satellite-derived PM2.5 datasets from 2001 to 2020 were used to analyze the temporal and spatial patterns of PM2.5 in China. The regional and population exposure risks of the nation and of urban agglomerations were evaluated by exceedance frequency and population weight. The results indicated that the PM2.5 concentrations of urban agglomerations decreased sharply from 2014 to 2020. The region with PM2.5 concentrations less than 35 μg·m−3 accounted for 80.27% in China, and the average PM2.5 concentrations in 8 urban agglomerations were less than 35 μg·m−3 in 2020. The spatial distribution pattern of PM2.5 concentrations in China revealed higher concentrations to the east of the Hu Line and lower concentrations to the west. The annual regional exposure risk (RER) in China was at a high level, with a national average of 0.75, while the average of 14 urban agglomerations was as high as 0.86. Among the 14 urban agglomerations, the average annual RER was the highest in the Shandong Peninsula (0.99) and lowest in the Northern Tianshan Mountains (0.76). The RER in China has obvious seasonality; the most serious was in winter, and the least serious was in summer. The population exposure risk (PER) east of the Hu Line was significantly higher than that west of the Hu Line. The average PER was the highest in Beijing-Tianjin-Hebei (4.09) and lowest in the Northern Tianshan Mountains (0.71). The analysis of air pollution patterns and exposure risks in China and urban agglomerations in this study could provide scientific guidance for cities seeking to alleviate air pollution and prevent residents’ exposure risks.
Funder
National Natural Science Foundation of China
Youth Innovation Promotion Association of CAS
Subject
General Earth and Planetary Sciences
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献