Study on Mapping and Identifying Risk Areas for Multiple Particulate Matter Pollution at the Block Scale Based on Local Climate Zones

Author:

Wu Wen1ORCID,Liu Ruihan1,Tang Yu1

Affiliation:

1. Liaoning Provincial Key Laboratory of Urban and Architectural Digital Technology, JangHo Architecture College, Northeastern University, Shenyang 110819, China

Abstract

As China’s urbanization process accelerates, the issue of air pollution becomes increasingly prominent and urgently requires improvement, based on the fact that environmental conditions such as meteorology and topography are difficult to change. Therefore, relevant optimization studies from the perspective of architectural patterns are operable to mitigate pollution. This paper takes the Wenhua Road block in Shenyang, China, as the research object; obtains the concentration data of three kinds of particulate matter through fixed and mobile monitoring; and analyzes the spatial distribution characteristics of Local Climate Zones ( LCZ) and particulate matter in the block based on the ArcGIS platform, identifies high-risk areas, and excavates the influence of LCZ on the concentrations of three kinds of particulate matter. The results show that the spatial distribution characteristics of PM1, PM2.5, and PM10 under the same pollution level are relatively similar, while the spatial heterogeneity of the distribution of the same particulate matter under different pollution levels is higher. The time-weighted results show that the PM1 pollution level in the block ranges from 44 to 51 μg/m³, PM2.5 ranges from 75 to 86 μg/m³, and PM10 ranges from 87 to 99 μg/m³. The pollution hot spots throughout the year are located in the central, eastern and western parts of the study area. In terms of the relationship between the LCZ and particulate matter, with the increase in the particulate matter diameter, the correlation between the three kinds of particulate matter and LCZ are all enhanced. The built-up LCZ always has a larger average concentration of particulate matter than that of the natural LCZ, and building height and building density are the main factors causing the difference. In the optimal design of the risk area, the proportion of natural vegetation or water surface should be increased and the building height should be properly controlled and the building density should be reduced in the renewal of the urban building form. This study will largely improve the spatial refinement of the optimization of urban architectural patterns oriented to mitigate particulate matter pollution.

Funder

National Natural Science Foundation of China

Liaoning Provincial Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Reference63 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3