Influence of Extruder’s Nozzle Diameter on the Improvement of Functional Properties of 3D-Printed PLA Products

Author:

Czyżewski PiotrORCID,Marciniak DawidORCID,Nowinka Bartosz,Borowiak MichałORCID,Bieliński Marek

Abstract

The dynamic growth of the use of polymer construction parts manufactured individually and in a small series makes it necessary to improve additive methods in the areas of materials, equipment and processes. By observing selected phenomena occurring during the processing of polymer materials in other production technologies (e.g., extrusion and injection molding), it is possible to obtain solutions that positively affect the final performance properties of the products obtained in additive manufacturing technologies using thermoplastic filament. The aim of this research was to determine the effect of the diameter of the print head nozzle on the spatial structure (path width) and selected mechanical properties of samples produced by the FFF method with PLA material. The obtained results were compared to the samples with a solid structure produced using injection molding technology. In the experiment, the RepRap device for additive manufacturing was used, with the use of nozzles with diameters of 0.2 mm, 0.4 mm, 0.8 mm and 1.2 mm. The test objects were produced with a layer height of 0.2 mm, full filling (100%) and with constant remaining printing parameters. The conducted research allowed us to conclude that the use of layer heights lower than the standard ones gives favorable results for selected mechanical properties. The use of an extruder nozzle diameter of 0.8 mm allows one to obtain a macrostructure with a high degree of interconnection of layers and paths and favorable mechanical properties. The test results can be used in the construction of functional elements that are produced by fused deposition modeling (FDM) and fused filament fabrication (FFF) methods in prototype, unit and small-lot production.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3