Experiment-Based Process Modeling and Optimization for High-Quality and Resource-Efficient FFF 3D Printing

Author:

Elkaseer AhmedORCID,Schneider Stella,Scholz Steffen G.ORCID

Abstract

This article reports on the investigation of the effects of process parameters and their interactions on as-built part quality and resource-efficiency of the fused filament fabrication 3D printing process. In particular, the influence of five process parameters: infill percentage, layer thickness, printing speed, printing temperature, and surface inclination angle on dimensional accuracy, surface roughness of the built part, energy consumption, and productivity of the process was examined using Taguchi orthogonal array (L50) design of experiment. The experimental results were analyzed using ANOVA and statistical analysis, and the parameters for optimal responses were identified. Regression models were developed to predict different process responses in terms of the five process parameters experimentally examined in this study. It was found that dimensional accuracy is negatively influenced by high values of layer thickness and printing speed, since thick layers of printed material tend to spread out and high printing speeds hinder accurate deposition of the printed material. In addition, the printing temperature, which regulates the viscosity of the used material, plays a significant role and helps to minimize the dimensional error caused by thick layers and high printing speeds, whereas the surface roughness depends very much on surface inclination angle and layer thickness, which together determine the influence of the staircase effect. Energy consumption and productivity are primarily affected by printing speed and layer thickness, due to their high correlation with build time.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3