Urbach Rule in the Red-Shifted Absorption Edge of PET Films Irradiated with Swift Heavy Ions

Author:

Tuleushev Adil Z.,Harrison Fiona E.,Kozlovskiy Artem L.ORCID,Zdorovets Maxim V.ORCID

Abstract

This paper presents a new analysis of the experimental transmission spectra of polyethylene terephthalate (PET) films before and after irradiation with swift heavy ions (SHI) films, as reported previously by the authors. It is shown that the absorption edge red shift for irradiated films contains two regions of exponential form, one of which is located in the UV region and the other at lower energy, mainly in the visible part of the spectrum. The behaviour of the transmission curves under different irradiating fluences demonstrates that these two regions reflect respectively the electron-enriched core of the latent track and its electron-depleted peripheral halo. The focal point method yields a bandgap energy of 4.1 eV for the electron-enriched core of the latent track, which is similar to n-doped semiconductors, and a bandgap of about 1.3–1.5 eV for the electron-depleted halo, similar to p-doped semiconductors. The boundary between the latent track cores and halos corresponds to a conventional semiconductor p-n junction. The values of the characteristic Urbach energy determined from experimental data correspond to the nonradiative transition energy between the excited singlet and triplet levels of benzene-carboxyl complexes in repeat units of the PET chain molecule. A parallel is drawn between the SHI-induced redistribution of electrons held in structural traps in the PET film and chemical redox reactions, which involve the redistribution of electrons in chemical bonds. It is suggested that alkali etching triggers the release of excess electrons in the latent track cores, which act as a catalyst for the fragmentation of PET chain molecules along the latent tracks of the SHI irradiation.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3