Insight into What Is inside Swift Heavy Ion Latent Tracks in PET Film

Author:

Tuleushev Adil Z.1,Harrison Fiona E.1,Kozlovskiy Artem L.12ORCID,Zdorovets Maxim V.12ORCID

Affiliation:

1. Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan

2. Laboratory of Solid State Physics, The Institute of Nuclear Physics, Almaty 050032, Kazakhstan

Abstract

We present here a novel experimental study of changes after contact electrification in the optical transmission spectra of samples of both pristine and irradiated PET film treated with Kr+15 ions of energy of 1.75 MeV and a fluence of 3 × 1010 cm2. We used a non-standard electrification scheme for injecting electrons into the film by applying negative electrodes to both its surfaces and using the positively charged inner regions of the film itself as the positive electrode. Electrification led to a decrease in the intensity of the internal electric fields for both samples and a hypsochromic (blue) shift in their spectra. For the irradiated PET sample, electrification resulted in a Gaussian modulation of its optical properties in the photon energy range 2.3–3.6 eV. We associate this Gaussian modulation with the partial decay of non-covalent extended conjugated systems that were formed under the influence of the residual radial electric field of the SHI latent tracks. Our studies lead us to suggest the latent track in the PET film can be considered as a variband material in the radial direction. Consideration of our results along with other published experimental results leads us to conclude that these can all be consistently understood by taking into account both the swift and slow electrons produced by SHI irradiation, and that it appears that the core of a latent track is negatively charged, and the periphery is positively charged.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3