Experimental and Numerical Study of Adhesively and Bolted Connections of Pultruded GFRP I-Shape Profiles

Author:

Eskenati Amir RezaORCID,Mahboob AmirORCID,Bernat-Maso ErnestORCID,Gil LluísORCID

Abstract

Recent developments indicate that the application of pultruded FRP profiles has been continuously growing in the construction industry. Generating more complex structures composed of pultruded FRP profiles requires joining them. In particular, I-shape glass fiber pultruded profiles are commonly used and the possible joints to connect them should be specifically studied. The mechanical behavior of adhesively and bolted joints for pultruded Glass FRP (GFRP) profiles has been experimentally addressed and numerically modeled. A total of nine specimens with different configurations (bolted joints, adhesive joints, web joints, web and flange joints, and two different angles between profiles) were fabricated and tested, extending the available published information. The novelty of the research is in the direct comparison of joint technologies (bolted vs. adhesive), joint configuration (web vs. flange + web) and angles between profiles in a comprehensive way. Plates for flange joints were fabricated with carbon fiber FRP. Experimental results indicate that adding the bolted flange connection allowed for a slight increase of the load bearing capacity (up to 15%) but a significant increase in the stiffness (between 2 and 7 times). Hence, it is concluded that using carbon FRP bolted flange connection should be considered when increasing the joint stiffness is sought. Adhesively connections only reached 25% of the expected shear strength according to the adhesive producer if comparing the numerically calculated shear strength at the failure time with the shear strength capacity of the adhesive. Apart from assessing adhesive connections, the implemented 3D numerical model was aimed at providing a simplified effective tool to effectively design bolted joints. Although the accurate fitting between experimental and numerical results of the mechanical response, especially the stiffness of the joint, the local failure experimentally observed was not automatically represented by the model, because of the simplified definition of the materials oriented to make the model available for a wide range of practitioners.

Funder

Ministry of Science, Innovation and Universities of the Spanish Government

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3