Numerical and artificial intelligence based investigation on the development of design guidelines for pultruded GFRP RHS profiles subjected to web crippling

Author:

Asghar Raheel,Javed Muhammad Faisal,Ali Mujahid,Najeh Taoufik,Gamil Yaser

Abstract

AbstractThis article presents a numerical and artificial intelligence (AI) based investigation on the web crippling performance of pultruded glass fiber reinforced polymers’ (GFRP) rectangular hollow section (RHS) profiles subjected to interior-one-flange (IOF) loading conditions. To achieve the desired research objectives, a finite element based computational model was developed using one of the popular simulating software ABAQUS CAE. This model was then validated by utilizing the results reported in experimental investigation-based article of Chen and Wang. Once the finite element model was validated, an extensive parametric study was conducted to investigate the aforementioned phenomenon on the basis of which a comprehensive, universal, and coherent database was assembled. This database was then used to formulate the design guidelines for the web crippling design of pultruded GFRP RHS profiles by employing AI based gene expression programming (GEP). Based on the findings of numerical investigation, the web crippling capacity of abovementioned structural profiles subjected to IOF loading conditions was found to be directly related to that of section thickness and bearing length whereas inversely related to that of section width, section height, section’s corner radii, and profile length. On the basis of the findings of AI based investigation, the modified design rules proposed by this research were found to be accurately predicting the web crippling capacity of aforesaid structural profiles. This research is a significant contribution to the literature on the development of design guidelines for pultruded GFRP RHS profiles subjected to web crippling, however, there is still a lot to be done in this regard before getting to the ultimate conclusions.

Funder

Lulea University of Technology

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3