Expanded Beads of High Melt Strength Polypropylene Moldable at Low Steam Pressure by Foam Extrusion

Author:

Tammaro DanieleORCID,Ballesteros Alberto,Walker Claudio,Reichelt Norbert,Trommsdorff Ulla

Abstract

We explore the foam extrusion of expanded polypropylene with a long chain branched random co-polypropylene to make its production process simpler and cheaper. The results show that the presence of long chain branches infer high melt strength and, hence, a wide foamability window. We explored the entire window of foaming conditions (namely, temperature and pressure) by means of an ad-hoc extrusion pilot line design. It is shown that the density of the beads can be varied from 20 to 100 kg/m3 using CO2 and isobutane as a blowing agent. The foamed beads were molded by steam-chest molding using moderate steam pressures of 0.3 to 0.35 MPa independently of the closed cell content. A characterization of the mechanical properties was performed on the molded parts. The steam molding pressure for sintering expanded polypropylene beads with a long chain branched random co-polypropylene is lower than the one usually needed for standard polypropylene beads by extrusion. The energy saving for the sintering makes the entire manufacturing processes cost efficient and can trigger new applications.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3