E-PBT—Bead foaming of poly(butylene terephthalate) by underwater pelletizing

Author:

Köppl T1,Raps D1,Altstädt V1

Affiliation:

1. Department of Polymer Engineering, University of Bayreuth, Bayreuth, Germany

Abstract

Foams from engineering thermoplastics like poly(butylene terephthalate) (PBT) are a new generation of polymer foams and, probably, the future for lightweight, insulation and damping materials. By means of foam extrusion or bead foaming, it is possible to achieve low-to-medium density foams (< 500 kg/m3). However, foam extrusion of PBT is quite challenging due to its low melt strength and drawability combined with a small temperature-processing window, which is a characteristic of semi-crystalline thermoplastics. This work proves that the problem of cell coalescence and insufficient cell stabilisation can be reduced by choosing the right material and processing parameters in foam extrusion with underwater pelletizing. Therefore, expanded PBT beads could be realised for the first time using CO2 as supercritical blowing agent. To obtain spherical low-density PBT beads with a homogenous foam structure, different process parameters were systematically studied with two different commercial extrusion grades and different blowing agent concentrations. The influence of water pressure and cutting speed of the underwater pelletizer on foam morphology of E-PBT and bead structure was studied. It was shown that using a polymer grade with a sufficiently high-melt viscosity helps to reduce cell coalescence. The lowest achieved density was 230 kg/m3. An increase of the blowing agent concentration did not help in reducing the density. The melting range was investigated by differential scanning calorimetry and yielded reasonable moulding temperatures of 205–215 ℃. This corresponds to steam pressures of 17–21 bar in a steam-moulding machine.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3