Research on Void Dynamics during In Situ Consolidation of CF/High-Performance Thermoplastic Composite

Author:

Song QinghuaORCID,Liu Weiping,Chen Jiping,Zhao DachengORCID,Yi Cheng,Liu Ruili,Geng Yi,Yang Yang,Zheng Yizhu,Yuan Yuhui

Abstract

Automated fiber placement (AFP) in situ consolidation of continuous CF/high-performance thermoplastic composite is the key technology for efficient and low-cost manufacturing of large thermoplastic composites. However, the void in the in situ composite is difficult to eliminate because of the high pressure and the short consolidation time; the void content percentage consequently is the important defect that determines the performance of the thermoplastic composite parts. In this paper, based on the two-dimensional Newtonian fluid extrusion flow model, the void dynamics model and boundary conditions were established. The changes of the void content percentage were predicted by the cyclic iteration method. It was found that the void content percentage increased gradually along the direction of the layers’ thickness. With the increasing of the laying speed, the void content percentage increased gradually. With the increasing of the pressure of the roller, the void content percentage gradually decreased. When the AFP speed was 11 m/min and the pressure of the compaction roller reached 2000 N, the void content percentage of the layers fell below 2%. It was verified by the AFP test that the measured results of the layers’ thickness were in good agreement with the predicted results of the model, and the test results of the void content percentage were basically equivalent to the predicted results at different AFP speeds, which indicates that the kinetic model established in this paper is representative to predict the void content percentage. According to the metallographic observation, it was also found that the repeated pressure of the roller was helpful to reduce the void content percentage.

Funder

Shanghai Collaborative Innovation Center of HighPerformance Fibers and Composites (Province-Minitry Joint)

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3