An experimental implication of long‐term hot‐wet‐aged carbon fiber/polyether ketone ketone composites: The impact of automated fiber placement process parameters and process‐induced defects

Author:

Sukur Emine Feyza123ORCID,Elmas Sinem234,Eskizeybek Volkan5ORCID,Sas Hatice S.234ORCID,Yildiz Mehmet234ORCID

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering Samsun University, Ondokuzmayıs Samsun Turkey

2. Integrated Manufacturing Technologies Research and Application Center Sabanci University, Pendik Istanbul Turkey

3. Composite Technologies Center of Excellence Sabanci University‐Kordsa, Istanbul Technology Development Zone, Pendik Istanbul Turkey

4. Faculty of Engineering and Natural Sciences Sabanci University Istanbul Turkey

5. Department of Materials Science and Engineering, Faculty of Engineering Canakkale Onsekiz Mart University Canakkale Turkey

Abstract

AbstractDuring the service life of aerospace‐grade composites, process parameters and process‐induced defects may become crucial. Most studies in this field have mainly focused on the relationship between process‐induced defects and mechanical performance. However, the potential impact of process parameters and process‐induced defects on the service life of composites serving under severe service conditions has received little attention. In this work, the effects of hydrothermal conditioning on the mechanical performance of carbon fiber/polyether ketone ketone (CF/PEKK) composites are examined, along with the correlation between automated fiber placement (AFP) process parameters and process‐induced defects. For this, gap and overlap defects integrated CF/PEKK laminates were exposed to a long‐term (90 days) hot‐wet aging environment to simulate the actual service conditions. Defect‐induced composite samples reached saturation point at the end of 30 days with a mass gain of 0.2 wt%. The aging process resulted in an increase in the degree of crystallization by almost 14% without a change in the chemical structure, indicating the postcrystallization of the PEKK matrix. Even though the thermo‐mechanical performance diminished (~25%) with the aging process, storage modulus was slightly affected by process parameters and process‐induced defects. Considering the flexural and shear test results after the aging process, the impact of gap and overlap defects on the service life of AFP composites can be minimized with higher compaction forces (600 N) and lower lay‐up speeds (0.1 m/s).

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3