Fused-Filament Fabrication of Short Carbon Fiber-Reinforced Polyamide: Parameter Optimization for Improved Performance under Uniaxial Tensile Loading

Author:

Belei CarlosORCID,Joeressen Jana,Amancio-Filho Sergio T.ORCID

Abstract

This study intends to contribute to the state of the art of Fused-Filament Fabrication (FFF) of short-fiber-reinforced polyamides by optimizing process parameters to improve the performance of printed parts under uniaxial tensile loading. This was performed using two different approaches: a more traditional 2k full factorial design of experiments (DoE) and multiple polynomial regression using an algorithm implementing machine learning (ML) principles such as train-test split and cross-validation. Evaluated parameters included extrusion and printing bed temperatures, layer height and printing speed. It was concluded that when exposed to new observations, the ML-based model predicted the response with higher accuracy. However, the DoE fared slightly better at predicting observations where higher response values were expected, including the optimal solution, which reached an UTS of 117.1 ± 5.7 MPa. Moreover, there was an important correlation between process parameters and the response. Layer height and printing bed temperatures were considered the most influential parameters, while extrusion temperature and printing speed had a lower influence on the outcome. The general influence of parameters on the response was correlated with the degree of interlayer cohesion, which in turn affected the mechanical performance of the 3D-printed specimens.

Funder

Austrian Research Promotion Agency

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference86 articles.

1. Light-weighting in aerospace component and system design

2. 20—Sustainability of Fiber-Reinforced Polymers (FRPs) as a Construction Material;Belarbi,2016

3. 6—Durability of Fiber-Reinforced Plastics for Infrastructure Applications;Ziehl,2020

4. 16—Fiber-Reinforced Polymer (FRP) Composites in Environmental Engineering Applications;Liang,2013

5. Application of Polymer Based Composite Materials in Transportation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3