Parameter design of continuous carbon fiber-reinforced phenolic resin composites via in situ-curing 3D printing technology

Author:

Dong Wencai1ORCID,Bao Chonggao1,Liu Rongzhen1,Li Shijia1

Affiliation:

1. School of Materials Science and Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, China

Abstract

To improve the print quality and mechanical properties, the process parameters of the continuous carbon fiber-reinforced phenolic resin (CF/PF) composites were systematically investigated based on the in situ-curing 3D printing technology. The printing spacing and printing thickness affected the bonding between fiber bundles. Under the optimized parameters, the surface of the CF/PF composites was smooth and flat, without obvious gaps between the adjacent prepregs and printing layers. Especially, we optimized the resin impregnation temperature ( T i) and analyzed the influence mechanism on mechanical properties. With the increasing impregnation temperature, the resin content and the squeezing force applied to fiber bundles decrease, while the wettability between fiber and resin increases. The resin contents and the squeezing force play more important role on the mechanical properties of the CF/PF composites. With the combined influence of the above effects, the flexural strength of CF/PF composites reaches maximum value of 471.1 MPa under the impregnation temperature of 30°C, printing spacing of 0.80 mm, and printing thickness of 0.10 mm, with minimum defect volume, uniform distribution of fiber and resin, and appropriate fiber/resin interaction.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3