Improved Performance of Solid Polymer Electrolyte for Lithium-Metal Batteries via Hot Press Rolling

Author:

Yadav Poonam,Beheshti Seyed HamidrezaORCID,Kathribail Anish RajORCID,Ivanchenko Pavlo,Mierlo Joeri VanORCID,Berecibar Maitane

Abstract

Solid-state batteries (SSBs) are gaining attention as they promise to provide better safety and a higher energy density than conventional liquid electrolyte batteries. Solid polymer electrolytes (SPEs) are promising candidates due to their flexibility providing better interfacial contact between electrodes and the electrolyte. However, SPEs exhibit very low ionic conductivity at ambient temperatures, which prevents their practical use in batteries. Herein, a simple and effective technique of hot press rolling is demonstrated to improve ionic conductivity and, hence, the performance of polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP)-based solid polymer electrolyte. Applying hot press rolling to the electrolyte membrane induced structural changes in the grain boundaries, which resulted in a reduction in the crystallinity of the material and, hence, an increase in the amorphous phase of the material, which eased the movement of the lithium ions within the material. This technique also improved the surface of the membrane, making it homogeneous and smoother, which resulted in better interfacial contact between the electrodes and electrolyte. Electrochemical tests were carried out on electrolyte membranes treated with and without hot press rolling to evaluate the effect of the treatment. The hot pressed electrolyte membrane showed significant improvements in its ionic conductivity and transference number. The cycling performance of the LFP/Li batteries using a hot press rolled electrolyte was also evaluated, which gave a specific discharge capacity of 134 mAh/g at 0.1 C. These results demonstrate that hot press rolling can have a significant effect on the electrochemical performance of solid polymer electrolytes.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3