Electronically Conductive Polymer Enhanced Solid-State Polymer Electrolytes for All-Solid-State Lithium Batteries

Author:

Smdani Md Gulam1,Hasan Md Wahidul1,Razzaq Amir Abdul1,Xing Weibing1ORCID

Affiliation:

1. Department of Mechanical Engineering, South Dakota School of Mines and Technology, 501 E. Saint Joseph St., Rapid City, SD 57701, USA

Abstract

All-solid-state lithium batteries (ASSLBs) have gained enormous interest due to their potential high energy density, high performance, and inherent safety characteristics for advanced energy storage systems. Although solid-state ceramic (inorganic) electrolytes (SSCEs) have high ionic conductivity and high electrochemical stability, they experience some significant drawbacks, such as poor electrolyte/electrode interfacial properties and poor mechanical characteristics (brittle, fragile), which can hinder their adoption for commercialization. Typically, SSCE-based ASSLBs require high cell stack pressures exerted by heavy fixtures for regular operation, which can reduce the energy density of the overall battery packages. Polymer–SSCE composite electrolytes can provide inherently good interfacial contacts with the electrodes that do not require high cell stack pressures. In this study, we explore the feasibility of incorporating an electronically and ionically conducting polymer, polypyrrole (PPy), into a polymer backbone, polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP), to improve the ionic conductivity of the resultant polymer–SSCE composite electrolyte (SSPE). The electronically conductive polymer-incorporated composite electrolyte showed superior room temperature ionic conductivity and electrochemical performance compared to the baseline sample (without PPy). The PPy-incorporated polymer electrolyte demonstrated a high resilience to high temperature operation compared with the liquid-electrolyte counterpart. This performance advantage can potentially be employed in ASSLBs that operate at high temperatures. In our recent development efforts, SSPEs with optimal formulations showed room temperature ionic conductivity of 2.5 × 10−4 S/cm. The data also showed, consistently, that incorporating PPy into the polymer backbone helped boost the ionic conductivity with various SSPE formulations, consistent with the current study. Electrochemical performance of ASSLBs with the optimized SSPEs will be presented in a separate publication. The current exploratory study has shown the feasibility and benefits of the novel approach as a promising method for the research and development of next-generation solid composite electrolyte-based ASSLBs.

Funder

Linda and Larry Pearson Endowed Chair at the Department of Mechanical Engineering, South Dakoda School of Mines & Technology

South Dakota Governor Research Center for Electrochemical Energy Storage

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3