A Machine Learning Framework to Predict the Tensile Stress of Natural Rubber: Based on Molecular Dynamics Simulation Data

Author:

Huang Yongdi,Chen Qionghai,Zhang Zhiyu,Gao Ke,Hu Anwen,Dong Yining,Liu Jun,Cui Lihong

Abstract

Natural rubber (NR), with its excellent mechanical properties, has been attracting considerable scientific and technological attention. Through molecular dynamics (MD) simulations, the effects of key structural factors on tensile stress at the molecular level can be examined. However, this high-precision method is computationally inefficient and time-consuming, which limits its application. The combination of machine learning and MD is one of the most promising directions to speed up simulations and ensure the accuracy of results. In this work, a surrogate machine learning method trained with MD data is developed to predict not only the tensile stress of NR but also other mechanical behaviors. We propose a novel idea based on feature processing by combining our previous experience in performing predictions of small samples. The proposed ML method consists of (i) an extreme gradient boosting (XGB) model to predict the tensile stress of NR, and (ii) a data augmentation algorithm based on nearest-neighbor interpolation (NNI) and the synthetic minority oversampling technique (SMOTE) to maximize the use of limited training data. Among the data enhancement algorithms that we design, the NNI algorithm finally achieves the effect of approaching the original data sample distribution by interpolating at the neighborhood of the original sample, and the SMOTE algorithm is used to solve the problem of sample imbalance by interpolating at the clustering boundaries of minority samples. The augmented samples are used to establish the XGB prediction model. Finally, the robustness of the proposed models and their predictive ability are guaranteed by high performance values, which indicate that the obtained regression models have good internal and external predictive capacities.

Funder

National Natural Science Foundation of China

Major Program of the National Nature Science Foundation of China

Beijing Municipal Natural Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3