Bio-Based Polymeric Substrates for Printed Hybrid Electronics

Author:

Luoma EnniORCID,Välimäki MarjaORCID,Ollila Jyrki,Heikkinen Kyösti,Immonen KirsiORCID

Abstract

Printed flexible hybrid electronics (FHE) is finding an increasing number of applications in the fields of displays, sensors, actuators and in energy harvesting and storage. The technology involves the printing of conductive and insulating patterns as well as mounting electronic devices and circuits on flexible substrate materials. Typical plastic substrates in use are, for example, non-renewable-based poly(ethylene terephthalate) (PET) or poly(imides) (PI) with high thermal and dimensional stability, solvent resistance and mechanical strength. The aim of this study was to assess whether renewable-based plastic materials can be applied on sheet-to-sheet (S2S) screen-printing of conductive silver patterns. The selected materials were biaxially oriented (BO) bio-based PET (Bio-PET BO), poly(lactic acid) (PLA BO), cellulose acetate propionate (CAP BO) and regenerated cellulose film, NatureFlex™ (Natureflex). The biaxial orientation and annealing improved the mechanical strength of Bio-PET and PLA to the same level as the reference PET (Ref-PET). All renewable-based substrates showed a transparency comparable to the Ref-PET. The printability of silver ink was good with all renewable-based substrates and printed pattern resistance on the same level as Ref-PET. The formation of the printed pattern to the cellulose-based substrates, CAP BO and Natureflex, was very good, showing 10% to 18% lower resistance compared to Ref-PET and obtained among the bio-based substrates the smallest machine and transverse direction deviation in the S2S printing process. The results will open new application possibilities for renewable-based substrates, and also potentially biodegradable solutions enabled by the regenerated cellulose film and PLA.

Funder

Academy of Finland

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3