Abstract
Soft sensor technology has become an effective tool to enable real-time estimations of key quality variables in industrial rubber-mixing processes, which facilitates efficient monitoring and a control of rubber manufacturing. However, it remains a challenging issue to develop high-performance soft sensors due to improper feature selection/extraction and insufficiency of labeled data. Thus, a deep semi-supervised just-in-time learning-based Gaussian process regression (DSSJITGPR) is developed for Mooney viscosity estimation. It integrates just-in-time learning, semi-supervised learning, and deep learning into a unified modeling framework. In the offline stage, the latent feature information behind the historical process data is extracted through a stacked autoencoder. Then, an evolutionary pseudo-labeling estimation approach is applied to extend the labeled modeling database, where high-confidence pseudo-labeled data are obtained by solving an explicit pseudo-labeling optimization problem. In the online stage, when the query sample arrives, a semi-supervised JITGPR model is built from the enlarged modeling database to achieve Mooney viscosity estimation. Compared with traditional Mooney-viscosity soft sensor methods, DSSJITGPR shows significant advantages in extracting latent features and handling label scarcity, thus delivering superior prediction performance. The effectiveness and superiority of DSSJITGPR has been verified through the Mooney viscosity prediction results from an industrial rubber-mixing process.
Funder
Applied Basic Research Project of Yunnan Province
National Natural Science Foundation of China
Subject
Polymers and Plastics,General Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献