Design of a Soft Sensor Based on Long Short-Term Memory Artificial Neural Network (LSTM) for Wastewater Treatment Plants

Author:

Recio-Colmenares Roxana1,León Becerril Elizabeth1ORCID,Gurubel Tun Kelly Joel2ORCID,Conchas Robin F.3

Affiliation:

1. Environmental Technology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico

2. School of Engineering and Technological Innovation, University of Guadalajara, Campus Tonalá, Tonalá 45425, Jalisco, Mexico

3. Electrical Engineering Department, Research Center and Advanced Studies of Instituto Politécnico Nacional (CINVESTAV), Unidad Guadalajara, Av. del Bosque 1145, El Bajío, Zapopan 45017, Jalisco, Mexico

Abstract

Assessment of wastewater effluent quality in terms of physicochemical and microbial parameters is a difficult task; therefore, an online method which combines the variables and represents a final value as the quality index could be used as a useful management tool for decision makers. However, conventional measurement methods often have limitations, such as time-consuming processes and high associated costs, which hinder efficient and practical monitoring. Therefore, this study presents an approach that underscores the importance of using both short- and long-term memory networks (LSTM) to enhance monitoring capabilities within wastewater treatment plants (WWTPs). The use of LSTM networks for soft sensor design is presented as a promising solution for accurate variable estimation to quantify effluent quality using the total chemical oxygen demand (TCOD) quality index. For the realization of this work, we first generated a dataset that describes the behavior of the activated sludge system in discrete time. Then, we developed a deep LSTM network structure as a basis for formulating the LSTM-based soft sensor model. The results demonstrate that this structure produces high-precision predictions for the concentrations of soluble X1 and solid X2 substrates in the wastewater treatment system. After hyperparameter optimization, the predictive capacity of the proposed model is optimized, with average values of performance metrics, mean square error (MSE), coefficient of determination (R2), and mean absolute percentage error (MAPE), of 23.38, 0.97, and 1.31 for X1, and 9.74, 0.93, and 1.89 for X2, respectively. According to the results, the proposed LSTM-based soft sensor can be a valuable tool for determining effluent quality index in wastewater treatment systems.

Funder

Consejo Nacional de Humanidades, Ciencias y Tecnologías

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference29 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3