Numerical Simulation on the Acoustic Streaming Driven Mixing in Ultrasonic Plasticizing of Thermoplastic Polymers

Author:

Wu WangqingORCID,Zou Yang,Wei Guomeng,Jiang Bingyan

Abstract

The acoustic melt stream velocity field, total force, and trajectory of fluorescent particles in the plasticizing chamber were analyzed using finite element simulation to investigate the acoustic streaming and mixing characteristics in ultrasonic plasticization micro-injection molding (UPMIM). The fluorescence intensity of ultrasonic plasticized samples containing thermoplastic polymer powders and fluorescent particles was used to determine the correlation between UPMIM process parameters and melt mixing characteristics. The results confirm that the acoustic streaming driven mixing occurs in ultrasonic plasticization and could provide similar shear stirring performance as the screw in traditional extrusion/injection molding. It was found that ultrasonic vibrations can cause several melt vortices to develop in the plasticizing chamber, with the melt rotating around the center of the vortex. With increasing ultrasonic amplitude, the melt stream velocity was shown to increase while retaining the trace, which could be altered by modulating other parameters. The fluorescent particles are subjected to a two-order-of-magnitude stronger Stokes drag force than the acoustic radiation force. The average fluorescence intensity was found to be adversely related to the distance from the sonotrodes’ end surface, and fluorescence particles were more equally distributed at higher parameter levels.

Funder

National Natural Science Foundation of China

Huxiang Young Talents Program

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3