Characterizing Ultrasonic Micro-Molding Process of Polyetheretherketone (PEEK)

Author:

Dorf T.1,Ferrer I.1,Ciurana J.1

Affiliation:

1. Department of Mechanical Engineering and Industrial Construction , University of Girona, Girona , Spain

Abstract

Abstract Ultrasonic micro-molding technology can dispense, melt and inject as small an amount of polymer as is required for one cycle, an advantage which makes the process highly desirable for low-volume and customized production of micro parts made from sensitive and very expensive polymers, especially in the medical sector. In this study, the feasibility of processing the polyetheretherketone (PEEK) polymer was investigated. The experiments conducted determined the parameters of a process that would allow parts with specific mechanical properties to be produced and verified as not degraded. The development of the process used three amplitude values as well as varying plunger velocity and vibration times. The three amplitude values and four speed values were tested to determine appropriate parameters for the ultrasonic process. Completely filled samples without any visual signs of degradation were analysed using FTIR-ATR, crystallinity percentage and tensile strength tests. Results show that the amplitude parameter is an important factor in the ultrasonic process and the higher its value is, the better the mechanical properties of complete parts are. Moreover, the tensile strength value of the specimens fabricated by ultrasonic micro-molding is comparable to that of conventional injection molding technology.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Reference17 articles.

1. Influence of Processing Conditions on Manufacturing Polyamide Parts by Ultrasonic Molding;Mater. Des.,2016

2. Welding of Plastics: Fundamentals and New Developments;Int. Polym. Proc.,2007

3. Research on the Polymer Ultrasonic Plastification;Adv. Mater. Res.,2009

4. Ultrasonic Plastification Speed of Polymer and its Influencing Factors;Journal of Central South University of Technology (English Edition),2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3