Influence of Ambient Temperature on Part Distortion: A Simulation Study on Amorphous and Semi-Crystalline Polymer

Author:

Antony Samy AntoORCID,Golbang Atefeh,Harkin-Jones Eileen,Archer EdwardORCID,Dahale Monali,McIlhagger Alistair

Abstract

Semi-crystalline polymers develop higher amounts of residual stress and part distortion (warpage) compared to amorphous polymers due to their crystalline nature. Additionally, the FDM processing parameters such as ambient temperature play an important role in the resulting residual stresses and part distortion of the printed part. Hence, in this study, the effect of ambient temperature on the in-built residual stresses and warpage of amorphous acrylonitrile-butadiene-styrene (ABS) and semi-crystalline polypropylene (PP) polymers was investigated. From the results, it was observed that increasing the ambient temperature from 50 °C to 75 °C and further to 120 °C resulted in 0.22-KPa and 0.37-KPa decreases in residual stress of ABS, but no significant change in the amount of warpage. For PP, increasing ambient temperature from 50 °C to 75 °C led to a more considerable decrease in residual stress (0.5 MPa) and about 3% increase in warpage. Further increasing to 120 °C resulted in a noticeable 2 MPa decrease in residual stress and a 3.4% increase in warpage. Reduction in residual stress in both ABS and PP as a result of increasing ambient temperature was due to the reduced thermal gradients. The enhanced warpage in PP with increase in ambient temperature, despite the reduction in residual stress, was ascribed to crystallization and shrinkage.

Funder

INTERREG VA Programme

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3