A Bayesian Approach for Lifetime Modeling and Prediction with Multi-Type Group-Shared Missing Covariates

Author:

Zeng Hao1ORCID,Sun Xuxue1ORCID,Wang Kuo2ORCID,Wen Yuxin3ORCID,Si Wujun4ORCID,Li Mingyang5ORCID

Affiliation:

1. College of Media Engineering, Communication University of Zhejiang, Hangzhou 310018, China

2. College of Data Science, Jiaxing University, Jiaxing 314001, China

3. Dale E. and Sarah Ann Fowler School of Engineering, Chapman University, Orange, CA 92618, USA

4. Department of Industrial, Systems and Manufacturing Engineering, Wichita State University, Wichita, KS 67260, USA

5. Department of Industrial and Management Systems Engineering, University of South Florida, Tampa, FL 33620, USA

Abstract

In the field of reliability engineering, covariate information shared among product units within a specific group (e.g., a manufacturing batch, an operating region), such as operating conditions and design settings, exerts substantial influence on product lifetime prediction. The covariates shared within each group may be missing due to sensing limitations and data privacy issues. The missing covariates shared within the same group commonly encompass a variety of attribute types, such as discrete types, continuous types, or mixed types. Existing studies have mainly considered single-type missing covariates at the individual level, and they have failed to thoroughly investigate the influence of multi-type group-shared missing covariates. Ignoring the multi-type group-shared missing covariates may result in biased estimates and inaccurate predictions of product lifetime, subsequently leading to suboptimal maintenance decisions with increased costs. To account for the influence of the group-shared missing covariates with different structures, a new flexible lifetime model with multi-type group-shared latent heterogeneity is proposed. We further develop a Bayesian estimation algorithm with data augmentation that jointly quantifies the influence of both observed and multi-type group-shared missing covariates on lifetime prediction. A tripartite method is then developed to examine the existence, identify the correct type, and quantify the influence of group-shared missing covariates. To demonstrate the effectiveness of the proposed approach, a comprehensive simulation study is carried out. A real case study involving tensile testing of molding material units is conducted to validate the proposed approach and demonstrate its practical applicability.

Funder

Key Lab of Film and TV Media Technology of Zhejiang Province

Public Welfare Technology Application Research Project of Zhejiang Province

National Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3