Enhanced Low-Velocity Impact Resistance of Helicoidal Composites by Fused Filament Fabrication (FFF)

Author:

Lu Xiaochun,Zhang Xiameng,Li YangboORCID,Shen Yan,Ma Yinqiu,Meng Yongdong

Abstract

Bioinspired composites, capable of tailoring mechanical properties by the strategy of making full use of their advantages and bypassing their drawbacks, are vital for numerous engineering applications such as lightweight ultrahigh-strength, enhanced toughness, improved low-/high- velocity impact resistance, wave filtering, and energy harvesting. Helicoidal composites are examples of them. However, how to optimize the geometric structure to maximize the low-velocity impact resistance of helicoidal composites has been ignored, which is vital to the lightweight and high strength for aerospace, defense, ship, bridge, dam, vessel, and textile industries. Here, we combined experiments and numerical simulations to report the dynamic response of helicoidal composites subjected under low-velocity impact (0–10 m/s). Our helicoidal structures, inspired by the Stomatopod Dactyl club, are fabricated using polylactic acid (PLA) by FFF in a single-phase way. The helicoidal strategy aims to exploit, to a maximum extent, the axial tensile strength of filaments and simultaneously make up the shortage of inter-filament contact strength. We demonstrate experimentally that the low-velocity impact resistance has been enhanced efficiently as the helicoidal angle varies, and that the 15° helicoidal plate is better than others, which has also been confirmed by the numerical simulations. The findings reported here provide a new routine to design composites systems with enhanced impact resistance, offering a method to improve impact performance and expand the application of 3D printing.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3