Abstract
Four 1,4-bis((9H-carbazol-9-yl)methyl)benzene-containing polymers (PbCmB, P(bCmB-co-bTP), P(bCmB-co-dbBT), and P(bCmB-co-TF)) were electrosynthesized onto ITO transparent conductive glass and their spectral and electrochromic switching performances were characterized. The PbCmB film displayed four types of color variations (bright gray, dark gray, dark khaki, and dark olive green) from 0.0 to 1.2 V. P(bCmB-co-bTP) displayed a high transmittance variation (∆T = 39.56% at 685 nm) and a satisfactory coloration efficiency (η = 160.5 cm2∙C−1 at 685 nm). Dual-layer organic electrochromic devices (ECDs) were built using four bCmB-containing polycarbazoles and poly(3,4-ethylenedioxythiophene) (PEDOT) as anodes and a cathode, respectively. PbCmB/PEDOT ECD displayed gainsboro, dark gray, and bright slate gray colors at −0.4 V, 1.0 V, and 2.0 V, respectively. The P(bCmB-co-bTP)/PEDOT ECD showed a high ∆T (40.7% at 635 nm) and a high coloration efficiency (η = 428.4 cm2∙C−1 at 635 nm). The polycarbazole/PEDOT ECDs exhibited moderate open circuit memories and electrochemical redox stability. The characterized electrochromic properties depicted that the as-prepared polycarbazoles had a satisfactory application prospect as an electrode for the ECDs.
Subject
Polymers and Plastics,General Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献