Electrochromic Polymers Based on 1,4-Bis((9H-carbazol-9-yl)methyl)benzene and 3,4-Ethylenedioxythiophene Derivatives as Promising Electrodes for Flexible Electrochromic Devices

Author:

Kuo Chung-Wen,Chang Jui-Cheng,Lin Yu-Xuan,Lee Pei-Ying,Wu Tzi-YiORCID,Ho Tsung-Han

Abstract

A 1,4-bis((9H-carbazol-9-yl)methyl)benzene (DCB)-containing homopolymer (P(DCB)) and four DCB- and ED-derivative (3,4-ethylenedioxythiophene (EDOT) and 3,4-ethylenedioxythiophene-methanol (EDm))-containing copolymers (P(DCB-co-ED), P(2DCB-co-ED), P(DCB-co-EDm), and P(2DCB-co-EDm)) were electropolymerized on ITO-polyethylene terephthalate (PET) substrates and their electrochromic performances were studied. DCB displays a lower Eonset than that of EDOT and EDm, conjecturing that the biscarbazole-containing DCB group shows a stronger electron-donating property than that of the ED derivatives. The P(2DCB-co-ED) film presents slate grey, dark khaki, and dark olive green at 0.0, 1.0, and 1.2 V. Bleaching-to-coloring switching studies of polymers show that P(2DCB-co-EDm) shows a high ΔT (31.0% at 725 nm) in solutions. Five dual-layer flexible electrochromic devices (ECDs) based on P(DCB), P(DCB-co-ED), P(2DCB-co-ED), P(DCB-co-EDm), and P(2DCB-co-EDm) as the anodic materials and PEDOT-PSS as the cathodic material are constructed. The P(2DCB-co-ED)/PEDOT-PSS flexible ECD shows a high ΔT (40.3% at 690 nm) and long-term electrochemical cycling stability, while the P(DCB-co-EDm)/PEDOT-PSS ECD shows a high ΔT (39.1% at 640 nm) and short response time (≤1.5 s). These findings offer us a new structural insight for the valuable design of conjugated polymers in high-contrast, flexible ECDs.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3