Effect of Physiological Fluids Contamination on Selected Mechanical Properties of Acrylate Bone Cement

Author:

Karpiński RobertORCID,Szabelski JakubORCID,Maksymiuk Jacek

Abstract

This study analyses the degradation rate of selected mechanical properties of bone cement contaminated with human blood and saline solution. During the polymerisation stage, the PMMA cement specimens were supplemented with the selected physiological fluids in a range of concentrations from 0% to 10%. The samples were then subjected to the standardised compression tests, as per ISO 5833: 2002, and hardness tests. The obtained results were analysed statistically to display the difference in the degradation of the material relative to the degree of contamination. Subsequently, numerical modelling was employed to determine the mathematical relationship between the degree of contamination and the material strength degradation rate. The introduction of various concentrations of contaminants into the cement mass resulted in a statistically significant change in their compressive strength. It was shown that the addition of more than 4% of saline and more than 6% of blood (by weight) causes that the specimens exhibit lower strength than the minimum critical value of 70 MPa, specified in the abovementioned International Standard. It was further revealed that the cement hardness characteristics degraded accordingly. The mathematical models showed a very good fit with the results from the experiments: The coefficient of determination R2 was 0.987 in the case of the linear hardness model for blood and 0.983 for salt solution; secondly, the values of R2 for the third-degree polynomial model of compressive strength were 0.88 for blood and 0.92 for salt. From the results, it can be seen that there is a quantitative/qualitative relationship between the contamination rate and the drop in the tested mechanical characteristics. Therefore, great effort must be taken to minimise the contact of the bone cement with physiological fluids, which naturally occur in the operative field, particularly when the material cures, in order to prevent the cement material strength declining below the minimum threshold specified in the ISO standard.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3