Quasi-static and dynamic mechanical properties of a linoleic acid-modified, low-modulus bone cement for spinal applications

Author:

Ghandour SalimORCID,Christie Iain,Öhman Mägi CarolineORCID,Persson CeciliaORCID

Abstract

Background Polymethylmethacrylate (PMMA) bone cement is extensively used in spinal procedures such as vertebroplasty and kyphoplasty, while its use in percutaneous cement discoplasty (PCD) is not yet widely spread. A main issue for both application sites, vertebra and disc, is the mismatch in stiffness between cement and bone, potentially resulting in adjacent vertebral fractures and adjacent segment disease. Tailoring the cement modulus using additives is hence an interesting strategy. However, there is a lack of data on the tensile and tension-compression fatigue properties of these cements, relevant to the newly researched indication of PCD. Method A commercial PMMA cement (VS) was modified with 12%vol of linoleic acid (VSLA) and tested for quasi-static tensile properties. Additionally, tension-compression fatigue testing with amplitudes ranging from +/-5MPa to +/-7MPa and +/-9MPa was performed, and a Weibull three-parameter curve fit was used to calculate the fatigue parameters. Results Quasi-static testing revealed a significant reduction in VSLA’s Young’s Modulus (E=581.1±126.4MPa) compared to the original cement (E=1478.1±202.9MPa). Similarly, the ultimate tensile stress decreased from 36.6±1.5MPa to 11.6±0.8MPa. Thus, VSLA offers improved compatibility with trabecular bone properties. Fatigue testing of VSLA revealed that as the stress amplitude increased the Weibull mean number decreased from 3591 to 272 and 91 cycles, respectively. In contrast, the base VS cement reached run-out at the highest stress amplitude. However, the lowest stress amplitude used exceeds the pressures recorded in the disc in vivo, and VSLA displayed a similar fatigue life range to that of the annulus fibrosis tissue. Conclusions While the relevance of fully reversed tension-compression fatigue testing can be debated for predicting cement performance in certain spinal applications, the results of this study can serve as a benchmark for comparison of low-modulus cements for the spine. Further investigations are necessary to assess the clinical feasibility and effectiveness of these cements.

Funder

Horizon 2020 Framework Programme

EIT Health

Publisher

F1000 Research Ltd

Reference53 articles.

1. Biomedical applications of polymer-composite materials: a review.;S Ramakrishna;Compos Sci Technol.,2001

2. PMMA: an essential material in medicine and dentistry.;R Frazer;J Long Term Eff Med Implants.,2005

3. 35 - Vertebroplasty.;E Gardner,2011

4. 34 - Kyphoplasty.;E Truumees,2011

5. The comprehensive treatment of the aging spine.;J Yue,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3