Thermodynamic Analysis and Working Fluid Selection of a Novel Cogeneration System Based on a Regenerative Organic Flash Cycle

Author:

Chen Haojie,Kim Man-HoeORCID

Abstract

Recently proposed organic flash cycles maintain lower irreversibility in the evaporator than traditional organic Rankine cycles. This study presented a novel combined heat and power system that was based on a regenerative organic flash cycle, in order to improve thermal efficiency. Parametric analyses for the proposed combined heat and power system were carried out, using six working fluids, and performed with heat source temperatures and heat sink temperatures that ranged from 130 °C to 170 °C, and from 20 °C to 40 °C, respectively. The results showed that the preferable working fluid was altered, with a change in the operating condition. Isopentane, R1234ze(Z), R1233zd(E), and R245fa performed better at a cooling water temperature of 20 °C. The system that used R245fa showed more promising performance when the heat source temperatures were set to 150 °C and 160 °C. R365mfc was determined to be the best working fluid at a heat source temperature of 150 °C, and at cooling water temperatures of 30–40 °C. Finally, the analyses evaluated the year-round system performance on the basis of monthly ambient and water temperatures in Daegu, Korea, as the system’s parameters. Compared to the single regenerative organic flash cycle, the thermal efficiency of the novel system improved significantly, from 8.37 % to 32.80% in August, and to 74.34% in February.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3