Research on Coordinated Control Strategy of Thermal Heating and Melting Depth of Steam Heating and Melting Salt Reservoir

Author:

Li Le1ORCID,Li Wenyi1,Ma Jianlong1

Affiliation:

1. College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

Abstract

The implementation of the upgrading of the national coal electric power unit has provided a clear proposal to promote the clean and low-carbon transformation of the power industry. With the power of large-scale intermittent renewable energy and power generation, the electric crew should be flexible enough to adjust resources to achieve a depth of 35% THA. This article aims to propose a heat extracting and heat storage system for fire power plants, to realize the coordinated control strategy of the deep peak, and to explore the coordinated control strategy of the steam–molten salt heat exchanger, molten salt and water exchanger, and the turbine’s main control. The simulation results reveal that the coordinated control of the steam–molten salt heat exchanger, molten salt and water heat exchanger, and steam turbine control could reduce the depth of the fire power unit by 10% THA. The output power response speed of the thermal power unit is enhanced by utilizing the heat turbine, which could effectively enhance the output power response speed of the thermal power unit and increase the output power response speed pertinent to 302.55 s by 75.60%.

Funder

2021 special purpose of the Inner Mongolia autonomous region: “Key technical research on hot heat storage heat storage heat storage heat storage heat storage heat storage heat storage”

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3