Hybrid Carbonated Engineered Water as EOR Solution for Oil-Wet Carbonate Formation

Author:

Ghosh Bisweswar,Kilybay AlibiORCID,Thomas Nithin Chacko,Haroun Mohammed,Rahman Md MotiurORCID,Belhaj HadiORCID

Abstract

Carbonated water has proven advantages over conventional CO2 injection in terms of arresting free CO2 mobility, low-pressure injection, lower volume requirement, and higher efficiency. The term “engineered water” is designated to selective ion-spiked injection water with the advantage of the ion-exchange reactions with the rock minerals and releasing trapped oil. This article investigated the synergic effect of dissolved CO2 and engineered water for oil recovery and understanding inner mechanisms. Recovery efficiencies were evaluated through coreflood studies, which revealed that the hybrid water could recover 6–10% more oil than engineered water and about 3% more than carbonated water. HP-HT pendant-drop studies show the insignificance of IFT reduction. Wettability change from oil wet to near-water wet is attributed as a significant factor. The dissolution of Ca2+ and Mg2+ and deposition of SO42− observed in coreflooding may have a significant contribution to oil recovery. Pore enlargement evidenced in NMR-PSD and NMR-ICP results support this claim. The study confirmed that the EWI-CWI hybrid technique could be a promising EOR method, eliminating the requirement for high-pressure injection, the problems of gravity segregation, and the early breakthrough of CO2. It can also be an effective EOR solution, providing a significant cost advantage and higher oil recovery in addition to the environmental benefits of CO2 sequestration.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3