A BiLSTM-Based DDoS Attack Detection Method for Edge Computing

Author:

Zhang Yiying,Liu Yiyang,Guo Xiaoyan,Liu Zhu,Zhang Xiankun,Liang KunORCID

Abstract

With the rapid development of smart grids, the number of various types of power IoT terminal devices has grown by leaps and bounds. An attack on either of the difficult-to-protect end devices or any node in a large and complex network can put the grid at risk. The traffic generated by Distributed Denial of Service (DDoS) attacks is characterised by short bursts of time, making it difficult to apply existing centralised detection methods that rely on manual setting of attack characteristics to changing attack scenarios. In this paper, a DDoS attack detection model based on Bidirectional Long Short-Term Memory (BiLSTM) is proposed by constructing an edge detection framework, which achieves bi-directional contextual information extraction of the network environment using the BiLSTM network and automatically learns the temporal characteristics of the attack traffic in the original data traffic. This paper takes the DDoS attack in the power Internet of Things as the research object. Simulation results show that the model outperforms traditional advanced models such as Recurrent Neural Network (RNN) and Long Short Term Memory (LSTM) in terms of accuracy, false detection rate, and time delay. It plays an auxiliary role in the security protection of the power Internet of Things and effectively improves the reliability of the power grid.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference32 articles.

1. DDoS attack detection based on abnormal characteristics of global network traffic;Luo;Comput. Appl.,2007

2. Internet of Things + blockchain helps food quality and safety assurance;Shi;Agric. Technol.,2019

3. DDoS attack detection method based on random forest classification model;Yu;Comput. Appl. Res.,2017

4. Realtime DDoS defense using COTS SDN switches via adaptive correlation analysis;Zheng;IEEE Trans. Inf. Forensics Secur.,2018

5. Hoque, N., Bhattacharyya, D.K., and Kalita, J.K. A novel measure for low-rate and high-rate DDoS attack detection using multivariate data analysis. Proceedings of the 2016 8th International Conference on Communication Systems and Networks (COMSNETS).

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3