Time‐based DDoS attack detection through hybrid LSTM‐CNN model architectures: An investigation of many‐to‐one and many‐to‐many approaches

Author:

Habib Beenish1ORCID,Khursheed Farida1

Affiliation:

1. Department of Electronics and Communication National Institute of Technology Srinagar India

Abstract

SummaryInternet data thefts, intrusions and DDoS attacks are some of the big concerns for the network security today. Detection of these anomalies, is gaining tremendous impetus with the development of machine learning and artificial intelligence. Even now researchers are shifting the base from machine learning to the deep neural architectures with auto‐feature selection capabilities. We in this paper propose multiple deep neural network architectures which can select, co‐learn and teach the gradients of the neural network by itself with no human intervention. This is what we call as meta‐learning. The models are configured in both many to one and many to many design architectures. We combine long short‐term memory (LSTM), bi‐directional long short‐term memory (BiLSTM), convolutional neural network (CNN) layers along with attention mechanism to achieve the higher accuracy values among all the available deep learning model architectures. LSTMs overcomes the vanishing and exploding gradient problem of RNN and attention mechanism mimics the human cognitive attention that screens the network flow to obtain the key features for network traffic classification. In addition, we also add multiple convolutional layers to get the key features for network traffic classification. We get the time series analysis of the traffic done for the possibility of a DDoS attack without using any feature selection techniques and without balancing the dataset. The performance analysis is done based on confusion matrix scores, that is, accuracy, false alarm rate (FAR), sensitivity, specificity, false‐positive rate (FPR), F1 score, area under curve (AUC) analysis and loss functions on well‐known public benchmark KDD Cup'99 data set. The results of our experiments reveal that our models outperform existing techniques, showing their superiority in performance.

Publisher

Wiley

Reference76 articles.

1. https://www.reuters.com/world/europe/ukrainian‐government‐foreign‐ministry‐parliament‐websites‐down‐2022‐02‐23/

2. https://theprint.in/world/website‐of‐russian‐space‐agency‐under‐ddos‐attack‐again/850164/

3. https://www.wired.com/story/github‐ddos‐memcached/

4. Threat Analysis and Distributed Denial of Service (DDoS) Attack Recognition in the Internet of Things (IoT)

5. A Survey of Security Vulnerability Analysis, Discovery, Detection, and Mitigation on IoT Devices

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3