Threat Analysis and Distributed Denial of Service (DDoS) Attack Recognition in the Internet of Things (IoT)

Author:

Ali Mohammed HasanORCID,Jaber Mustafa MusaORCID,Abd Sura Khalil,Rehman AmjadORCID,Awan Mazhar JavedORCID,Damaševičius RobertasORCID,Bahaj Saeed Ali

Abstract

The Internet of Things (IoT) plays a crucial role in various sectors such as automobiles and the logistic tracking medical field because it consists of distributed nodes, servers, and software for effective communication. Although this IoT paradigm has suffered from intrusion threats and attacks that cause security and privacy issues, existing intrusion detection techniques fail to maintain reliability against the attacks. Therefore, the IoT intrusion threat has been analyzed using the sparse convolute network to contest the threats and attacks. The web is trained using sets of intrusion data, characteristics, and suspicious activities, which helps identify and track the attacks, mainly, Distributed Denial of Service (DDoS) attacks. Along with this, the network is optimized using evolutionary techniques that identify and detect the regular, error, and intrusion attempts under different conditions. The sparse network forms the complex hypotheses evaluated using neurons, and the obtained event stream outputs are propagated to further hidden layer processes. This process minimizes the intrusion involvement in IoT data transmission. Effective utilization of training patterns in the network successfully classifies the standard and threat patterns. Then, the effectiveness of the system is evaluated using experimental results and discussion. Network intrusion detection systems are superior to other types of traditional network defense in providing network security. The research applied an IGA-BP network to combat the growing challenge of Internet security in the big data era, using an autoencoder network model and an improved genetic algorithm to detect intrusions. MATLAB built it, which ensures a 98.98% detection rate and 99.29% accuracy with minimal processing complexity, and the performance ratio is 90.26%. A meta-heuristic optimizer was used in the future to increase the system’s ability to forecast attacks.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3