Intelligent Resource Allocation in Residential Buildings Using Consumer to Fog to Cloud Based Framework

Author:

Javaid Sakeena,Javaid Nadeem,Saba Tanzila,Wadud Zahid,Rehman AmjadORCID,Haseeb Abdul

Abstract

In this work, a new orchestration of Consumer to Fog to Cloud (C2F2C) based framework is proposed for efficiently managing the resources in residential buildings. C2F2C is a three layered framework consisting of cloud layer, fog layer and consumer layer. Cloud layer deals with on-demand delivery of the consumer’s demands. Resource management is intelligently done through the fog layer because it reduces the latency and enhances the reliability of cloud. Consumer layer is based on the residential users and their electricity demands from the six regions of the world. These regions are categorized on the bases of the continents. Two control parameters are considered: clusters of buildings and load requests, whereas four performance parameters are considered: Request Per Hour (RPH), Response Time (RT), Processing Time (PT) and cost in terms of Virtual Machines (VMs), Microgrids (MGs) and data transfer. These parameters are analysed by the round robin algorithm, equally spread current execution algorithm and our proposed algorithm shortest job first. Two scenarios are used in the simulations: resource allocation using MGs and resource allocation using MGs and power storage devices for checking the effectiveness of the proposed work. The simulation results of the proposed technique show that it has outperformed the previous techniques in terms of the above-mentioned parameters. There exists a tradeoff in the PT and RT as compared to cost of VM, MG and data transfer.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3