Proposed Machine Learning Techniques for Bridge Structural Health Monitoring: A Laboratory Study

Author:

Noori Hoshyar Azadeh1,Rashidi Maria2ORCID,Yu Yang3ORCID,Samali Bijan2

Affiliation:

1. Institute of Innovation, Science and Sustainability, Federation University Australia, Brisbane, QLD 4001, Australia

2. Centre for Infrastructure Engineering, School of Engineering, Design and Built Environment, Western Sydney University, Sydney, NSW 2747, Australia

3. Centre for Infrastructure Engineering and Safety, University of New South Wales, Kensington, NSW 2052, Australia

Abstract

Structural health monitoring for bridges is a crucial concern in engineering due to the degradation risks caused by defects, which can become worse over time. In this respect, enhancement of various models that can discriminate between healthy and non-healthy states of structures have received extensive attention. These models are concerned with implementation algorithms, which operate on the feature sets to quantify the bridge’s structural health. The functional correlation between the feature set and the health state of the bridge structure is usually difficult to define. Therefore, the models are derived from machine learning techniques. The use of machine learning approaches provides the possibility of automating the SHM procedure and intelligent damage detection. In this study, we propose four classification algorithms to SHM, which uses the concepts of support vector machine (SVM) algorithm. The laboratory experiment, which intended to validate the results, was performed at Western Sydney University (WSU). The results were compared with the basic SVM to evaluate the performance of proposed algorithms.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3