Affiliation:
1. The Key Laboratory of Industrial Automation of Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, China
Abstract
In recent years, deep convolutional neural networks (CNNs) have made significant progress in single-image super-resolution (SISR) tasks. Despite their good performance, the single-image super-resolution task remains a challenging one due to problems with underutilization of feature information and loss of feature details. In this paper, a multi-scale recursive attention feature fusion network (MSRAFFN) is proposed for this purpose. The network consists of three parts: a shallow feature extraction module, a multi-scale recursive attention feature fusion module, and a reconstruction module. The shallow features of the image are first extracted by the shallow feature extraction module. Then, the feature information at different scales is extracted by the multi-scale recursive attention feature fusion network block (MSRAFFB) to enhance the channel features of the network through the attention mechanism and fully fuse the feature information at different scales in order to improve the network’s performance. In addition, the image features at different levels are integrated through cross-layer connections using residual connections. Finally, in the reconstruction module, the upsampling capability of the deconvolution module is used to enlarge the image while extracting its high-frequency information in order to obtain a sharper high-resolution image and achieve a better visual effect. Through extensive experiments on a benchmark dataset, the proposed network model is shown to have better performance than other models in terms of both subjective visual effects and objective evaluation metrics.
Funder
National Natural Science Foundation of China
National Social Science Foundation of China
National Education Science Foundation of China
Key Project of Shaanxi Provincial Natural Science Basic Research Program
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献