A Multi-Scale Recursive Attention Feature Fusion Network for Image Super-Resolution Reconstruction Algorithm

Author:

Han Xiaowei1ORCID,Wang Lei1,Wang Xiaopeng1ORCID,Zhang Pengchao1,Xu Haoran1

Affiliation:

1. The Key Laboratory of Industrial Automation of Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, China

Abstract

In recent years, deep convolutional neural networks (CNNs) have made significant progress in single-image super-resolution (SISR) tasks. Despite their good performance, the single-image super-resolution task remains a challenging one due to problems with underutilization of feature information and loss of feature details. In this paper, a multi-scale recursive attention feature fusion network (MSRAFFN) is proposed for this purpose. The network consists of three parts: a shallow feature extraction module, a multi-scale recursive attention feature fusion module, and a reconstruction module. The shallow features of the image are first extracted by the shallow feature extraction module. Then, the feature information at different scales is extracted by the multi-scale recursive attention feature fusion network block (MSRAFFB) to enhance the channel features of the network through the attention mechanism and fully fuse the feature information at different scales in order to improve the network’s performance. In addition, the image features at different levels are integrated through cross-layer connections using residual connections. Finally, in the reconstruction module, the upsampling capability of the deconvolution module is used to enlarge the image while extracting its high-frequency information in order to obtain a sharper high-resolution image and achieve a better visual effect. Through extensive experiments on a benchmark dataset, the proposed network model is shown to have better performance than other models in terms of both subjective visual effects and objective evaluation metrics.

Funder

National Natural Science Foundation of China

National Social Science Foundation of China

National Education Science Foundation of China

Key Project of Shaanxi Provincial Natural Science Basic Research Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3