Study on Ecological Loss in Coal Mining Area Based on Net Primary Productivity of Vegetation

Author:

Fu Shuai,Bai Zhongke,Yang Boyu,Xie Lijun

Abstract

Opencast mining contributes to the severe disturbance of vegetation and serious damage to the ecological environment. Scientific assessment of the ecological losses may provide guidance for the sustainable land use in mining areas. This study uses the Carnegie Ames Stanford Approach (CASA) model to estimate the net primary productivity (NPP) of vegetation in the Pingshuo mining area from 2006 to 2020 and uses statistical analysis and mathematical models to study the impact of mining and land reclamation on NPP. The results show that NPP decreased slowly at a rate of 0.809 gC/(m2·month) per year. In 2006, the urban area of Pinglu and the opencast coal mining area were located in the western part of the study area, while the eastern part was distributed with a large amount of grassland, forested and cultivated land, and the NPP showed a high pattern in the east and low in the west. With the continued eastward movement of Antaibao and Anjialing mining areas, as well as the construction and continuous westward expansion of the East opencast mine, the pits of all three opencast mines moved to a central location in 2020, changing the spatial distribution of NPP to high in the surroundings and low in the middle. The NPP within the three opencast mines decreased significantly, but the change in NPP increased from −7.34 gC/(m2·month) to 7.15 gC/(m2·month) as the reclamation area increased, indicating that mining increased ecological losses while land reclamation mitigated them. The variation of NPP within 600 m outside the mining area is 2.06~7.45 gC/(m2·month), and 0.11~1.00 gC/(m2·month) from 600 m to 1000 m, indicating that NPP is sensitive to the influence of mining. The results may provide guidance for further analysis of the impact of mining on local environments and exploration of more appropriate land reclamation measures.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3