Author:
Tian Huiwen,Liu Shu,Zhu Wenbo,Zhang Junhua,Zheng Yaping,Shi Jiaqi,Bi Rutian
Abstract
Spatial differentiation of the net primary productivity (NPP) of vegetation is an important factor in the ecological protection and restoration of mining areas. However, most studies have focused on climatic productivity constraints and rarely considered the effects of soil properties and mining activities. Thus, the impact of the forces driving NPP in mining areas on spatial location remains unclear. Taking the Changhe Basin mining area as an example, we used the Carnegie–Ames–Stanford approach (CASA) model to estimate NPP and quantified the impact of climate, soil properties, and mining activities based on factorial experiments. Our results indicate that the average NPP in the Changhe Basin mining area was 290.13 gC/(m2·yr), and the NPP in the western Changhe Basin, an intensive coal mining area, was significantly lower than that in the east. The correlations between each driver and NPP varied by location, with mean annual temperature and precipitation, soil organic carbon, total nitrogen, and land degradation showing strong correlations. The relative importance of climate, soil properties, and mining activities on the spatial variability of NPP was 38.97%, 31.50%, and 29.53%, respectively. Furthermore, 70.72% of the NPP variability in mining areas was controlled by the coupled effects of climate and soil properties (CS + SC) or climate and mining activities (CM + MC). Meanwhile, The NPP in the western Changhe Basin mining area was mainly controlled by mining activities (M) or climate and mining activities (CM), while that in the east was mainly controlled by soil properties and climate (CS). Overall, our study extends the knowledge regarding the impacts of driving forces on spatial variation of NPP in mining areas and provides a reference point for forming strategies and practices of ecological restoration and land reclamation in different spatial locations in mining areas.
Funder
Henan University Postgraduate Talents Project
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献